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ABSTRCICT 

w & w = -  
In  describing the diffusion of a rectangular pulse of plasma i n  a 

background n e u d a l  gas the  diffusion equation e - DV% predicts  the 

instantaneous appearance of plasma pa r t i c l e s  a t  an a rb i t r a ry  distance from 

t h e i r  i n i t i a l  position. 

a t  - 

By considering the problem from the  moments of 
I 
d the  Bo1tzma.m equation it is shownthat i n  deriving a diffusion equation it 

i s  necessary t o  take pa r t i c l e  i ne r t i a  in to  account. 

0 
I 

An in teg ra l  solution 

of the resu l t ing  equation i s  obtained. T h i s  solution i s  interpreted as 

implying that  the  flow t o  an arb i t ra ry  point i n  space consists of par t ic les  

which stream through the background gas and those t h a t  suffer  a co l l i s ion  

i n  t r a n s i t .  

function i n t o  symmetric and antisymmetric parts and solving the Boltzmann 

The problem i s  a l so  discussed by expanding the d is t r ibu t ion  

equation as an i n i t i a l  value problem. The r e s u l t  can be integrated t o  

y ie ld  the  solution for the s p a t i a l  and temporal development of any of the 

I 
P 
B 
8 
I 
8 
I 
? 
8 
-- 

macroscopic variables.  The phenomenon has been investigated experimentally 

by generating a pulsed plasma i n  a r e s t r i c t ed  volume and detecting i t s  

presence a t  a remote point by double probe techniques. The data demonstrate 

the  existence of a f i n i t e  diffusion veloci ty  as well a s  the f r ee  streaming 

and co l l i s iona l  charac te r i s t ics  of the pa r t i c l e  flow. 

V 



1 

I. INTRODUCTION 

I n  describing the relaxation of a density gradient i n  a gaseous 

medium it i s  common t o  use the well known diffusion equation, 

- -  d N  - D 0 2 N  
a t  

t o  predict  the temporal and spa t i a l  development of the perturbation. 

t i o n  (1) yields an adequate description of diffusion phenomena under most 

circumstances- It i s  discussed i n  par t  11-A of t h i s  report. 

w e  examine the derivation of equation (1) from the moments of the Boltzmnn 

equation.' It i s  shown t h a t  the  ine r t i a  of the pa r t i c l e s  has been neglected 

i n  the  formulation of the par t ic le  flux. This omission can be shown t o  

account f o r  several  physical anomalies predicted by equation (l), involving 

Equa- 

In  past 11-B 

spec i f ica l ly ,  an instantaneous i n i t i a l  re laxat ion of any density gradients. 

c Similar considerations have been shown t o  apply t o  heat flow. 

3 Goldstein considered t h i s  problem from a s t a t i s t i c a l  point of view 

and showed t h a t  i n  general, equation (1) should be modified t o  a form 

reminiscent of the telegraphers' equation. This r e s u l t  has been obtained 

by several  authors. Goldstein obtained a general solution of the  i n i t i a l  4-6 

value problem and concluded t h a t  there ex i s t s  a f i n i t e  veloci ty  of propaga- 

t i o n  but did not present a means of calculating i t s  value. Huchital and 

Holt 4 obtain the  telegrapher 's  equation by considering the  f i r s t  t w o  

moments of the Boltzmann equation for the Lorentzian gas and present a phys- 

i c a l  j u s t i f i c a t i o n  of the solut ion i n  terms of f r ee  streaming and co l l i s iona l  

par t ic les ,  a r r iv ing  a t  a r e s u l t  of (k!C/m)'l2 f o r  the propagation speed. It 

i s  thus concluded t h a t  diffusion of a gas develops i n  space at  the one 

dimensional thermal speed. The specific case of a charge neut ra l  plasma i s  

discussed by Shimony and Cahn who obtain the r e s u l t  after postulating that 5 

the  plasma flow is ambipolar. Their r e s u l t  f o r  the  propagation speed i s  
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'I2 where D i s  the  ambipolar diffusion coefficient and Ua i s  ( aDa) a 

an "ambipolar co l l i s ion  frequency" 
, 

Finally, Sandler and Dahlerb discuss the problem from the viewpoint 

of the f l u i d  equations fo r  a binary mixture and conclude t h a t  the  veloci ty  

of propagation i s  equal t o  ( P / ? ) ~ / ~  where p i s  the  f l u i d  pressure and 

p the f l u i d  density. 

I n  part 11-C, Goldstein's r e su l t  f o r  the diffusion equation i s  

obtained by retaining the  e f f ec t s  of pa r t i c l e  i n e r t i a  i n  the  Boltzmann 

equation derivation. 

a more r e a l i s t i c  physical analysis of t he  relaxation of density pertur- 

bations t o  be made. However, i n  part 11-D it i s  shown tha t  Goldstein's 

result  i s  complete only i n  the very special case of a mono-energetic gas. 

A technique i s  developed fo r  t he  solution of the Boltzmann equation as an 

i n i t i a l  value problem which yields r e su l t s  t h a t  are i n  some qual i ta t ive  

agreements with Goldstein's but include the e f fec ts  of a d is t r ibu t ion  of 

veloci t ies .  In addition, t h i s  r e su l t  can be used t o  determine the spa t i a l  

and temporal development of a l l  the macroscopic variables. 

The resul t ing modification of equation (1) permits 

The theoret ical  analysis therefore contains a description of the 

diffusion phenomenon a t  three levels :  

1. the Fick's Law, o r  quasi-steady state approach, 

2. the macroscopic approach from the  moments of the Boltzmann equa- 

tion, and 

3. the microscopic, or Boltzmann equation approach. 

Quantitative analysis of the  solutions indicates,  however, that they 

are similar under cer ta in  circumstances. An experiment has been designed 

t o  s a t i s f y  those  conditions where one would expect the modified analyses t o  

be preferable. This experiment i s  discussed i n  section I V ,  where it i s  

shown that the modified analyses are required t o  explain the  experimental data. 



c 

I 3 

A. The Conventional Theory of Gaseous Diffusion 

If w e  consider the  problem of a weakly ionized gas i n  the absence of 

external forces, then the momentum equation, that is  the first moment of the 

Boltzmann Equation, can be shown t o  take the  form 1 

where 

= number density 
NS 

m = par t i c l e  mass 
S - < vS> = average pa r t i c l e  velocity 

= co l l i s ion  frequency w i t h  neu t ra l  pa r t i c l e s  US - 
= J v2 f dc rr, 

and the  subscript  "s" denotes the sth species of particle, i n  this case, either 

electrons or  ions. 

W e  w i l l  assume the  electronic and ionic  d is t r ibu t ion  functions a re  

very nearly Maxwellian, so that equation (2) can be approximted by 

It i s  further assumed t h a t  no temperature gradients exist, so 

Now the pa r t i c l e  flux i s  defined by 
- 
7 1 = N < v >  

so equation (4) can be wri t ten 
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I 

1 
c 

a r  - 
= - m u  7 

s s  s 
m -  + lrTs V Ns 

s a t  
- 

a TS 
A t  t h i s  point, steady state i s  assumed so - - - 0, and equation (6) i s  a t  

or  

T S  = - D s V N s  

where the  def ini t ion of the diffusion coefficient,  D, i s  obvious. 

Equation (8) i s  generally known as Fick's Law, and i s  sometimes used 

as a s ta r t ing  point i n  discussing the relaxation of a density perturbation. 

Now the continuity equation f o r  the  sth species i s  

So combining equation (8) and (9) w e  have the  usual r e su l t .  

For simplicity, we consider the  one dimensional case. The solut ion 

of equation (10) i s  eas i ly  shown t o  be 

Then 

A s  an example, we consider 

a 
l 



b 

I 
c 

5 

- JX-xq2 

dx' 4Dt N(x,t) = - & E f a  e 
-a 

And i f  we subs t i tu te  

x-x' = w 

w e  obtain 

I '  
which i s  

The solutions a re  sketched for several  values of t i m e  i n  Figure 1. 

This solut ion loses plaus ib i l i ty ,  however, when it i s  subjected t o  a physical 

analysis.  As an initial condition, w e  defined a sharp pulse of gas confined 

i n  -a .I x 5 a. However, a f t e r  an a r b i t r a r i l y  short  time in t e rva l  E, equa- 

t i o n  (11) predicts t h a t  plasma par t ic les  e x i s t  i n  a l l  space, - 00 4 x < OC,  

as shown i n  Figure 2. Of course, the density of pa r t i c l e s  i s  s t i l l  very low 

fo r  

finding a pa r t i c l e  a very large distance from x = 0, an a r b i t r a r i l y  short  

t i m e  after t = 0. 

1x1 1 > a, but equation (13) s t i l l  implies a f i n i t e  probabi l i ty  of 

Another objection can be raised a f t e r  considering the physical bas i s  

of the diffusion process. 

pa r t i c l e  density. 

when such a gradient ex is t s .  

where E i s  very small. We see tha t  the  e n t i r e  plasma d is t r ibu t ion  changes 

i n  an a r b i t r a r i l y  short  t i m e .  But i s  t h i s  reasonable? Certainly those mr- 
t i c l e s  near x = 0 can "see" no density gradient i n i t i a l l y .  Only those 

Diffusion occurs only because of a gradient of 

We therefore would th ink  t h a t  a gas would diffuse only 

Let us again examine the  s i t ua t ion  f o r  t = E 
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par t ic les  near the edges of the plasma are  aware of the discontinuity, so  

only these should take part i n  the i n i t i a l  diffusion. 

(13)  predicts t h a t  regardless of how far a pa r t i c l e  i s  from a density gradient 

(a 

However, equation 

i s  a rb i t ra ry)  it w i l l  s t i l l  be affected by i t s  existence. 

We conclude ten ta t ive ly  t h a t  t he  solution leaves some important 

questions unanswered when the  physical process i s  examined. We w i l l  show 

i n  the  next section t h a t  the complete solution t o  the diffusion problem i s  

free of these d i f f i cu l t i e s .  

B. The Complete Solution fo r  the Diffusion Equation 

t o  the 

i n  the 

The d i f f i cu l t i e s  experienced i n  the 

i n i t i a l  stages of i t s  development. 

form 

previous discussion can be traced 

The momentum equation was wri t ten 

and the  assumption of steady state was made, yielding 

- 
V N  -7 / = -  

m 3  (7) 

But the motivation fo r  t h i s  discussion i s  tha t  w e  a re  considering a 

non-steadystate s i tuat ion.  

somewhat questionable t o  a r b i t r a r i l y  put 

Since w e  seek an equation i n  - a N  it seems - d t  ’ 
- 0. I n  t h i s  section, there- d - - 

a t  
fore,  we w i l l  solve equation (6) together w i t h  the continuity equation, 

- 
= 0. a l7 

without assuming - at 
We take the divergence of equation (6) and the t i m e  derivative of 

equation (9) t o  yield 

(9) 



7 

Combining equations (6 ) ,  ( g ) ,  (14) and (15) yields 

o r  

1 This  i s  the r e s u l t  obtained by both Goldstein3 and Holt and Haskell. 

Comparing equation (16) w i t h  the  previous r e su l t ,  equation (10) we 

see that the  only difference i s  the  inclusion of the term 

The next section examines the implication of the second derivative.  

C. Gaseous Diffusion as an I n i t i a l  Value Problem - 
Solution of the Diffusion Equation 

For the sake of simplicity,  w e  consider the one dimensional problem. 

Equation (16) is  then 

- - a% + 1 & +  1; dN = o  
D d t  a X2 L D  at2 

To solve equation (17) we assume a product solut ion for N, 

N(x,t) = X(x) T ( t )  
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A 

Equation (17) is  then 

(19) 
1 T" + - 1 T l  - x" = - 
X YMI DT 

Following the separation of variables technique we write the  equation 

fo r  X as 

1 2 
X 
- XI1 = -k 

from which 

i k x  X = c(k) e 

Similarly w e  obtain the following equation f o r  T, 

the solut ion of which i s  

-ib (k)  t ] T = e  ib(k)t + B(k)e  

where 

b(k)  = 4- k L ) D  - '4 U 

A solution of equation (17) i s  then 

e ib(k)t + B ( k )  e 
, 

where k' i s  the  separation constant. 

Apparently, each value of k leads t o  a d i f fe ren t  r e s u l t  f o r  N. 

The complete solution t o  equation (17) i s  then obtained by integrat ing over 

k. 
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The remainder of the problem involves r e l a t ing  the coeff ic ients  A ( k )  

and B(k) t o  the i n i t i a l  conditions. If we consider these conditions t o  be 

N(x ,O)  and l i m  (denoted by N (x,O)), then as shown i n  
t + 0  d t  t 

Appendix A, equation (25) becomes 

It i s  d i f f i c u l t  t o  draw any conclusions d i r ec t ly  from equation (26). 

Careful evaluation of the results predicted by (26) involves choosing the 

init ial  conditions N(x,O) and Nt(xJO). 

D- Discussion of the Theoretical Solution 

I n  order t o  simplify the  calculation, we shoose a par t icu lar ly  simple 

example, t h a t  of an initial 8-funct ion,  

Then equation (26) reduces t o  
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N(x,t) = 2 e - ft { J (x- Et ) + $(x+ t )  
I 
1 

- -Yt 
Lle 2 JO [gLJW] 

I 
1 

It i s  d i f f i c u l t  t o  draw any conclusions concerning the physical solution 

are misleading as they indicate a - P from t h i s  resu l t .  The terms i n  e 

severe damping i n  the diffusion phenomenon. 

a cer ta in  extent by the f a c t  t h a t  the argument of the Bessel functions i s  

This var ia t ion  i s  balanced t o  

I imaginary s o  tha t  they represent exponentially increasing rather  than osc i l la tory  

functions. However, before w e  proceed w i t h  an asymptotic expansion of the 

1 solution, there are several  points t o  note. Most important w e  observe t h a t  

equation (3 )  i m p l i e s  a propagating solution. 

the  or ig ina l  pulse moving t o  the  l e f t  and r igh t  with the one dimensional 

The f i r s t  t e r m  merely indicates 

- 
I thermal velocity, 4%' . It should be noted t h a t  the  def in i te  integrals  lead- 

ing t o  the  second and t h i r d  terms vanish fo r  x > E t, fur ther  i l l u s t r a t i n g  

the  propagcting nature of the  solution. 

We see then t h a t  the f irst  term of the  expansion can be expressed as 

shown graphically i n  Figure 3. 

The second and t h i r d  terms are  much more d i f f i c u l t  t o  discuss. We w i l l  

2 
therefore consider them only f o r  x such tha t  x 4< t2, tha t  is ,  reason- 

I ably far fromthe leading edges of the propagating pulse. Now since the  

argument of the Bessel functions i s  imaginary, make use of the r e l a t ion  

I n (v) = i-n Jn( iv)  
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- .  

where In(v)  i s  a modified Bessel function of the f i r s t  kind. 

It i s  r e l a t ive ly  easy t o  obtain an asymptotic expansion f o r  In(v)  as 

V i a  by the method of steepest  descent. The r e s u l t  is 

Le t  us consider the t h i r d  term of equation (27). The d i f f i cu l ty  i s  

the  Bessel function 

By equation (28) t h i s  i s  

So by using equation (29) w e  can write the e n t i r e  term as 

2 - t2 > > x  , we write Now since we a re  taking m 

and 

So the  r e s u l t  i s  
2 
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Similarly, we can evaluate the  second term i n  equation (27) 

And f i n a l l y  

The complete solution i s  as shown i n  Figure 4. 

In order t o  have a good basis  f o r  comparison with the conventional 

theory, w e  should solve equation (26) for  the  case of an i n i t i a l  square pulse 

of plasma. However, the in tegra ls  are  d i f f i c u l t  t o  evaluate and t h e i r  cal-  

culation w i l l  shed l i t t l e  addi t ional  l i gh t  on t h i s  discussion. W e  can con- 

s t r u c t  an adequate qua l i ta t ive  picture by considering the form of equation (26) 

and the preceeding example. The major points t o  be gathered are 

1) The i n i t i a l  d i s t r ibu t ion  s p l i t s  and propagates along the posit ive 

and negative x axis. 

2 )  These propagating groups leave behind a bell-shaped residue which 

f l a t t e n s  out slowly. 

This s i tua t ion  can be ju s t i f i ed  by physical arguments i f  we keep i n  

mind the  fac t  that the  momentum equation, equation (6) of t h i s  paper, i s  

derived by an integrat ion of the Boltzmann equation over veloci ty  space. The 

e f f ec t s  of a 

thus l o s t  i n  

the  point of 

by v i r tue  of 

exactly half  

d i s t r ibu t ion  of i n i t i a l  veloci ty  among the plasma par t ic les  i s  

the treatment above and the ju s t i f i ca t ion  must be made from 

view of an "average" par t ic le  moving a t  a s p e d E  Therefore, 

the  symmetry of the  square pulse which w e  are considering, 

the  par t ic les  a r e  moving i n i t i a l l y  i n  the posit ive x direct ion 



and half i n  the negative x direction. Immediately a f t e r  t = 0, the 

I '  two clouds pass through each other and move along the x axis. This sp l i t t i ng ,  

together with the previously noted attenuation, i s  i l l u s t r a t e d  i n  Figure 5. 

Apparently the effect  of a d is t r ibu t ion  of speeds among the par t ic les  

w i l l  be t o  "round off" the sharp edges shown i n  Figure 5. This phenomenon 

i s  a complication a t  t h i s  stage, and fur ther  discussion of it is deferred t o  

the next section. - -Yt 
W e  must now question the implications of the fac tor  e i n  the 

f irst  t e r m .  W e  see t h a t  it i s  intimately re la ted  t o  the  remaining terms of 

the solut ion since these vanish i f  Y = 0. The important point t o  rea l ize  

i s  that co l l i s ions  re ta rd  the diffusion process. Diffusion occurs only be- 

cause of the thermal veloci ty  of the par t ic les .  The fac tor  e i n  the 
- $t  

first t e r m  must therefore correspond t o  a loss  from the  propagating pulses 

due t o  col l is ions,  and these p a r t i c l e s  must appear i n  the solution i n  the  

residue expressed by the Bessel function terms. Physically, a group of 

p a r t i c l e s  starts t o  diffuse according t o  i t s  thermal velocity,  and the motion 

of these "free streaming" par t ic les  i s  interrupted by col l is ions so that some 

of t he  pa r t i c l e s  a re  l e f t  behind. The complete solut ion i s  sketched i n  

Figures 6 and 7. 

W e  r e c a l l  the major objections t o  the conventional theory: 

1) That i s  predicted a f i n i t e  probabili ty of finding a pa r t i c l e  

an a r b i t r a r i l y  large distance f r o m i t s  point of or ig in  a f t e r  an a r b i t r a r i l y  

short t i m e ,  that  is, an i n f i n i t e  velocity of propagation, and 

2 )  That it predicted an immediate perturbation of every pa r t i c l e  

i n  the  gas, regardless of how f a r  a p r t i c l e  might be f romthe  density gradients. 

W e  conclude that these d i f f i cu l t i e s  a re  no longer present. 
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However, an objection can be raised t o  the  present approach. The 

conventional theory has existed f o r  a considerable period of time, without 

I 
1 

having been contradicted by experiment. How then, can w e  j u s t i fy  the  claims 

made i n  the  preceeding sections? 

of most experiments. O f  course, i n  a steady s t a t e  s i tuat ion,  the  two 

approaches are ident ica l  as a l l  time derivatives vanish, so  w e  are interested 

The answer l i es  i n  considering the  geometry 

I 
i n  the afterglow o r  pulsed plasma case. Recall t h a t  w e  have decided tha t  

the  average velocity of propagation of the leading edges of the disturbance 

I i s  E. A temperature of 1oo,ooo0K i s  not at a l l  unusual i n  a conventional 

b gas discharge. The associated diffusion speed i s  then 1.23 x 10 meters/sec. 

the plasma has propagated t o  the  so that on a discharge 

edges of the  vessel  i n  

tha t  i s  observed a f t e r  

preceeding discussion. 

tube of radius 1 cm, 

8.1 x seconds! 

t h i s  time i s  w h a t  w e  

And a t  a suf f ic ien t  

I The only diffusion phenomenon 

have cal led the  "residue" i n  the  

distance from the leading edges 

of the pulse, (x<< Et) the shape of the residue i s  asymptotic t o  t h a t  

predicted by the conventional theory, i .e. 

2 

4Dt 
X - -  

residue /v e 

I 
I 

We would, however, expect some discrepancies between the  two theories  I 
1 
1 
I 
1 
i 

when the  discharge tube i s  so long as t o  allow considerable time fo r  the 

disturbance t o  propagate. This poss ib i l i ty  i s  discussed i n  Section IV. 



111. SOLUTION OF THE BOUTZMA" EQUATION A S  AN INITIA..L VAIIJE PROBIEM 

I n  the preceeding section we have shown t h a t  re ta ining the concept of 

p a r t i c l e  i n e r t i a  r e s u l t s  i n  a s ignif icant ly  more complete description of the 

diffusion phenomenon. 

short  of being a complete discussion. 

However, w e  must a l so  concede that t h i s  extension falls 

The deficiencies of the theory are 

pointed out most c lear ly  by the fact  t h a t  it predicts that a l l  the streaming 

particles move with velocity ,/$ despite the f a c t  that a velocity dis t r i -  

bution was postulated. 

macroscopic equations. The first n moments of the Boltzmann equation con- 

T h i s  anomaly stems d i r ec t ly  from the nature of the  

t a i n  (n+l) variables.  For example, the first two moments, the equations 

of continuity and flow, contain three macroscopic variables,  density, f lux  

and pressure. In  order t o  solve the s e t  of macroscopic equations it i s  

necessary t o  truncate the ser ies .  This is  usually accomplished by assumptions 

of the form of the variable of highest order which r e l a t e  it t o  the lower 

order variables.  In  our example of the f i rs t  two moments, the pressure was 

assumed equal t o  nkT. It i s  apparent t h a t  t h i s  statement i s  d i f f i c u l t  t o  

j u s t i f y  fo r  t h i s  problem. In  addition, temperature gradients were neglected 

t o  avoid introducing temperature as a t h i r d  variable.  

In t h i s  section we w i l l  eliminate these d i f f i c u l t i e s  by taking a more 

general view of the problem and solving the Boltzmann equation rather  than 

the  moment equations. The r e s u l t  of t h i s  approach i s  qui te  general and can 

be used t o  discuss the development of any of the macroscopic variables. 

A. The Distribution Function 

The problem of transport  variables i s  d i r ec t ly  re la ted  t o  the  symmetry 

o r  anti-symmetry of the dis t r ibut ion function i n  veloci ty  space. No flow can 

result in ,  say, the  x direct ion i f  the d is t r ibu t ion  function is  symmetric 

about the  vx axis.  
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However, discussion of the even and odd components of the d is t r ibu t ion  

function i s  somewhat more complex than it might a t  first appear. We w i l l  

show that even i n  the absence of external  forces, the  symmetric and an t i -  

symmetric parts are coupled, so t h a t  a net f l u  w i l l  arise even i f  the dis-  

t r ibu t ion  function i s  i n i t i a l l y  isotropic.  

I n  the absence of external  forces, the  Boltzmann equation takes the 

form 

d f  - - df  + v - V f  = (-) 
3t 3% c 

and f o r  gradients i n  the x direct ion only, it becomes 

J f  a f  - -  d f  - (-) 3 t + V x  a x  3 t c  

L e t  us consider s p l i t t i n g  the d is t r ibu t ion  function in to  odd and even 

components with respect t o  v X' i .e.,  

where 

f 0 (-vx) = -f0(Vx) (33) 

e e 
f (-vx) = f (vx) (34) 

It may not be obvious tha t  the expansion defined by equations (32), 

(33) and (34) is  complete. W e  can prove completeness rigorously be defining 

+e -0 the quantit ies f (k) and f (k) as follows: 

j f(a) cos ka! d a  d e  
f (k) = - m 



Then fe(vx) and fo(vx) are determined by 

00 

f 0 (vx) = - f c f o ( k )  s i n  kvx dk = JJ f (a) s i n  kcr s i n  hX dk da m -cxt 2n 

f e (v,) = 1 P^)fe(k)  cos kv dk = - /T f(a) cos kcr cos kvx dk da 
2n X m - m  

Equations (37) and (38) apparently s a t i s f y  the conditions of equations 

(33) and (34). 

as follows: 

Final ly  w e  can readi ly  prove the completeness of the expansion 

11 f(a) COS k(a-vx) dk da f 0 (vx) + f"(Q = 

2n 
--op 

rx: 

= j -  f(a) J (a-vx) da = f (vx)  
._I. 

-1 

We can therefore write the Boltzmann equation i n  the form 

c J c  

And as shown i n  Appendix 3 

SO equation (39) becomes 

If we now multiply equation (40) by 2 5 ~  s i n  kCX s i n  kv and integrate  
X 

over k and a, we have 
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and s i m i l a r l y ,  multiplying by - cos kol cos kvx and integrat ing yields 
2n 

= o  d f0  d fe  - 
d t  x a x  - + v  

Equations (41) and (42) enable us t o  solve the Boltzmann equation as 

an i n i t i a l  value problem. 

B. Solutions for fo  and fe  

We can combine equations (41) and (42) t o  obtain p a r t i a l  d i f f e ren t i a l  

equations i n  fo  and f e  individually, 

2 d2f0 - + L, - -  & f o e  v 2 
d 2fo 

b t2 d x  d -t (43 1 

2 J2fe 
2 - + + - -  - v  J 2fe t3 fe  

3 t2 C 3 X  d t  (44) 

However, it i s  important t o  note t h a t  fo and fl are  s t i l l  related 

by the i n i t i a l  conditions. If these conditions are 

l i m  dt d fo(v,x,t)  (denoted by fto(v,x,O) ) 
t 9 0  

l i m  - fe(v,x, t )  
t 9 O  st 

(denoted by fte(v,x,O) ) 

then according t o  equations (41) and (42), they are related by  



d e  
ft0(v,x,0) + v x - ax f (v,x,o) = 0f0(v,x,0) 

19  

(45 1 

Let us consider the problem of an initially isotropic distribution 

function. Then 

e 
f (v,x,o) = n(x) ~ ( v )  

fO(v,x,O) = 0 

The remaining initial conditions are determined from equations (45) 

and (46) to 3e 

0 
f (v,x,O) = - vx n'(x)  F(v) t 

e 
f (v,x,o) = 0 t 

Equations (43) and (44) are of the same f o r m  as that discussed in 

Appendix A. The solutions can be expressed as 

- 2t 
m f (v,x,t) = - - 2 

0 e 
2v 

(47) 
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1 If we integrate  equation (48) by parts, we f ind  

So f ina l ly ,  

- 2% 
F(v) 1 x+vt n(8) Jo [ $ I d ) /  

2 3 e  + 
x -vt 2v 

1 
1 
I 
1 
1 
I 
I 

There a re  several  important aspects of equation (SO) that should be 

I n  contrast with the previous r e su l t ,  equation (26 ) ,  it may appear noted. 

tha t  equation (50) predicts propagation of the "fast" group only along the 

posi t ive x axis.  In  th i s  connection, it i s  necessary t o  r e c a l l  that v 

takes both positive and negative values so tha t  propagation i n  both direct ions 

i s  implied. 

veloci ty  class diffuses a t  i t s  own i n t r i n s i c  speed. 

Second and most important, equation (50 )  predicts  that each 

Therefore, a diffusing 

gas smears out  due t o  a d is t r ibu t ion  of i n i t i a l  ve loc i t ies .  

Equation (50) i s  e s sen t i a l ly  a correction t o  the r e s u l t  of the macro- 

scopic approach of Section 11-C. This correction i s  important i f  the spread 

of i n i t i a l  veloci t ies  i s  "large" compared w i t h  the  "average" speed. A 
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further implication of equation (50) that might, under some circumstances, 

be important is the point that "hot" particles diffuse more quickly than 

"coo1" ones. 

diffusing gas so that it is unrealistic, in general, to discuss density 

gradients without considering the associated temperature gradients. 

the most important implication of equation (50 )  is as follows. 

ing that the pressure was equal to nkT, it was explicitly assumed that 

the distribution function was factorable into a density in configuration 

space and a density in velocity space. Equation ( 5 0 )  shows that this is 

not, in general, true. 

Finally, we should note that given the initial distribution function, 

Therefore temperature gradients are immediately set up in a 

However, 

In postulat- 

a ~ y  macroscopic variable can be determined by taking the appropriate 

moment of equation (50) .  This approach represents a considerable simplifi- 

cation, as the higher order moments of the Boltzmann equation are usually 

non-linear and therefore f a i r l y  difficult to solve. 
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IV. MPERIMENTAL ANALYSIS 

A. Objects of the Experiment 

The object of the experiment was t o  es tab l i sh  the necessity, under 

cer ta in  conditions, fo r  using equation (16) or equation (50)  ra ther  than 

equation (1) t o  describe the diffusion phenomenon. To t h i s  end, a dischasge 

tube was designed permitting pulsed ionization of the gas i n  a specif ic  

volume and the observation of the ionization a t  a remote point. 

ment was based on the  following spec i f ic  objectives: 

The experi- 

1) Equations (1) and (16) predict  d i f fe r ing  t races  of density versus 

time a t  a point remote f romthe  point of or igin of a f r e e l y  diffusing plasma. 

Reference t o  Figures 1 and 6 shows t h a t  equations (1) and (16) predict  r e s u l t s  

as shown qual i ta t ively i n  Figures 8 and 9 respectively.  Therefore, a major 

objective of the experiment w a s  t o  analyze the  r e su l t s  under conditions 

designed t o  produce a curve of the Figure 9 type. 

2 )  One of the major points of the preceeding discussion i s  tha t  the 

modified theory predicts a propagating solution. Therefore, another major 

objective of the  experiment has been t o  observe and measure a f i n i t e  veloci ty  

of diffusion. 

3) The preceeding in te rpre ta t ion  of the predicted phenomenon i n  terms 

of "free streaming" and "residue" pa r t i c l e s  c a l l s  f o r  a t  l e a s t  qua l i ta t ive  

ver i f icat ion.  

represent those par t ic les  t h a t  have t rave l led  the complete path from ioniza- 

t i o n  point t o  sensing point without suffering a col l is ion,  then the magnitude 

of the peak should exhibi t  the charac te r i s t ic  exponential dependence upon 

pressure and length of path. 

If, as  has been argued, the i n i t i a l  peak of density does indeed 

I n  view of these objectives,  the apparatus shown i n  Figure 10 was 

constructed. 
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B. Experimental Apparatus 

The experimental apparatus i s  designed for the  production of a repeti- 

t i v e  pulsed p l a s m  between a pair of electrodes and the  detection of the  plasma 

by probes placed some distance away. 

provided and numbered as i n  Figure 10 so as t o  provide m i a b i l i t y  of t he  path 

Five s e t s  of ionization electrodes are 

length between the ionization and sensing ports. The distances from these 
t 

electrode sets t o  probe set A A a re  as follows: 2 2  

Electrode set E - 6.7 centimeters 

D - 9.8 centimeters 

C - 13 centimeters 

B - 17 cen t imte r s  

A number of points concerning the mechanics of the experiment are 

worthy of mention. The presence and approximate density of the  p l a sm are 

detected I;jr the  ckss fca l  f;sztfrs 2robe tecb,n,iq?;e I T>*e 2y.EenCf? cf 

a conducting medium between probes A and B causes a po ten t ia l  t o  appear 

across R1- 

improved by d i f fe ren t ia t ing  this  potential. 

It w a s  found that the c l a r i t y  of the r e s u l t s  was considerably 

Pulsed ionization of the gas w a s  accomplished by exter ior  electrodes 

for two reasons: 

1) Mounting the  electrodes exter ior  t o  the c e l l  permits great flexi- 

b i l i t y  i n  determining t h e i r  distance r e l a t ive  t o  the probes. 

2 )  Exterior mounting eliminates d i r ec t  current conducting paths from 

the  ionizat ion t o  sensing electrodes. 

However, i n  order t h a t  ionization by external  electrodes be possible 

without prohibit ive pulse s izes ,  it was necessary t o  provide a source of 

primary electrons from an independent source. T h i s  w a s  accomplished by 
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maintaining a very low l eve l  dc discharge across the tube between electrode 

Bo and ground. The dc current was maintained a t  approximately .01 m. A t  

t h i s  level,  no v i s ib l e  glow was apparent. Finally,  the dc discharge was 

operated w i t h  the  anode grounded i n  order t h a t  the poten t ia l  a t  which the 

probes f l o a t ,  i . e .  the plasma space potent ia l ,  be as close t o  ground poten t ia l  

as possible. 

C Experimental Results 

The f irst  se r i e s  of measurements was aimed a t  comparing the shape of 

the probe curve with that predicted i n  Figure 8. A s  previously explained, 

the shape i s  a sensi t ive function of both the neut ra l  gas pressure and the 

distance between the ionizing electrodes and sensing probes. Figure 11 i s  

presented as an example of the r e su l t s  obtained. I n  t h i s  case, the system 

pressure w a s  0.35 Torr and the electrode spacing was 1.3 cm. It should be 

noted t h a t  both a sharp i n i t i a l  group indicating the f r ee  streaming par t ic les ,  

and a smooth secondary group indicating the residue par t ic les ,  are  observed. 

The interplay between these two groups as a function of pressure i s  demon- 

s t r a t ed  by t h e  s e r i e s  of photographs i n  Figure 12. A s  expected, since the 

i n i t i a l  peak represents these pa r t i c l e s  which t raverse  the path without any 

co l l i s ions ,  the s ize  of the peak i s  greatest  f o r  low pressures and seems t o  

disappear altogether a t  higher pressures. 

The e f fec t  of increasing the length of the diffusion path i s  very 

similar t o  increasing the pressure as both procedures r e s u l t  i n  greater 

probabi l i ty  of co l l i s ions  with neutrals.  The se r i e s  of photographs i n  Fig- 

ure 1-3 w a s  taken a t  a pressure of 0.3 Torr. The length of the diffusion 

path f o r  each sample i s  indicated. 

13 should be noted. 

The s imi la r i ty  between Figures 12 and 

Finally, an attempt t o  determine the veloci ty  of propagation has been 
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made by detecting the appearace of t he  leading edge of the free stream- 

ing pa r t i c l e s  originating f romthe  various s e t s  of electrodes. 

was complicated by the  f a c t  t h a t  the i n i t i a l  condition included some elec-  

t rons  with very high veloci t ies .  

111, these stream between the probes too  quickly t o  be measured. 

th i s  s i t ua t ion  it w a s  possible t o  determine a propagation speed f o r  the bulk 

of par t ic les .  

This attempt 

And according t o  the discussion of Section 

Despite 

The r e s u l t  i s  shown i n  Figure 14. The veloci ty  was calculated 

t o  be approximately 8 x 10 5 meters/second. Further, the change i n  the slope 

of the leading edge i s  evidence of the e f fec t  of a d is t r ibu t ion  of veloci t ies .  

D. Discussion 

The r e s u l t s  presented i n  the preceeding section would appear t o  verify,  

a t  l e a s t  qual i ta t ively,  both the d i f fe ren t ia l  diffusion equation, equation (16), 

and i t s  integrat ion t o  equation (31).  

"fast" and "slow" pa r t i c l e s  can be observed f o r  a var ie ty  of pressures and 

diffusion path lengths. 

The two representative groupings, i n t o  

A s  presented here, the e f fec t  of increasing the path length, as shown 

i n  Figure 13, i s  an immediate consequence of equation (31) as th is  equation 

predic t s  an exponential damping of t h e  leading edges of the diffusing gas. 

The in te rpre ta t ion  of this data as "fast1' pa r t i c l e s  representing f r ee  stream- 

ing and pa r t i c l e s  indicating co l l i s ions  i s  j u s t i f i e d  qua l i ta t ive ly  by 

the data i n  Figure 12. 

w a s  shown t o  decrease rapidly wi th  increasing pressure, while the nmiber of 

pa r t i c l e s  i n  the residue i s  great ly  enhanced. Interpret ing Figure 12 accord- 

ing t o  the preceeding discussion, we conclude that at a pressure of 0.2 Torr, 

almost a l l  the pa r t i c l e s  reach the probes without suffering a col l is ion,  while 

a t  0.4 Torr, the reverse i s  true.  

Here the number of fast pa r t i c l e s  reaching the probes 
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Figure 14 shows the difference 

f o r  two different  electrode se t s .  A n  
1 i n  the a r r i v a l  time of fast par t ic les  

accurate determination of the veloci tv  " 

of propagation i s  d i f f i c u l t  because of i t s  large magnitude, and the tendency I 
of the  leading edge t o  damp quickly with distance. 

5 The magnitude of t h i s  veloci ty  (8 x 10 meters/sec.) leads t o  some 

ten ta t ive  conclusions regarding the nature of the  flow. If  the  detected 

flow i s  electronic,  w e  must s e t  v 

This implies an electron temperature of some 43,OOOOK. 

= /g = 8 x 10 5 meters/second. 

I 
electron 

Though t h i s  may seem 

1 
somewhat high for  a room temperature experiment where the e l e c t r i c  f i e l d s  

are  perpendicular t o  the  t rave l ,  it should be recal led tha t  the large charge 

t o  mass r a t i o  

fo r  electrons 

large applied 

energy. 

On the 

I 
1 

of an electron makes only a very small e l e c t r i c  f i e l d  necessary 

t o  reach t h i s  temperature. And one would suppose tha t  the 

f i e l d s  involve suf f ic ien t  fringing t o  provide the necessary 

other hand, it might be postulated that the flow i s  ambipolar I 
I i n  nature. This si tuat , ion i s  discussed i n  Appendix B. It i s  shown that the 

veloci ty  of ambipolar flow i s  approximately within the  mass r a t i o  

1 
I 
1 
i 
1 

where M i s  the ion mass and T- and T+ are the  electron and ion temper- 

atures. 

t o  reach a velocity of 

Fromthis,  it can be eas i ly  shown t h a t  i n  order f o r  ambipolar flow 

5 meters/second, the electron or ion temperature 8 x 10 

would have t o  be of the  order of lo9 OK. We conclude therefore, t h a t  the 

detected response indicates mainly electronic  flow. 



27 

V. CONCLUSIONS 

This paper has presented an extension of the conventional theory of 

nonequilibrium gaseous diffusion. 

of the  conventional theory incorporates cer ta in  assumptions and the proposed 

modification involves a derivation without them. The conventional theory 

runs i n t o  two d i f f i c u l t i e s  when the  i n i t i a l  condition of a square pulse of 

gas is  considered. The standard d i f f e ren t i a l  equation integrates  t o  indicate 

f i rs t  an i n f i n i t e  veloci ty  of diffusion, and second an instantaneous de- 

formation of the e n t i r e  gas, regardless of how d i s t an t  any density pertur- 

bations might be. 

modified theory. 

It has been shown that the development 

Neither of these d i f f i c u l t i e s  is  experienced with the 

The modified diffusion equation d i f f e r s  from the conventional theory 

Integrat ion of t h i s  equa- i n  being second ra ther  than f i r s t  order i n  time. 

t i o n  has led t o  the following physical description of the diffusion process. 

Diffusion occurs so le ly  because of the thermal motion of the par t ic les .  

The outer limits of the diffusing gas therefore expand a t  the thermal speed. 

The chief e f fec t  of co l l i s ions  wi th  massive neutrals  i s  t o  remove coll iding 

pa r t i c l e s  from the "fast" expanding edges and leave them i n  a bell-shaped 

residue which continues t o  diffuse outward. The observation of the diffusion 

of a gas at a point remote from the point of origin,  can then be divided 

i n t o  three t i m e  periods: 

1. where no diffusing gas i s  detected u n t i l  gaseous par t ic les ,  moving 

at  the thermal speed, can reach the observation point, 

2. where the  "fast" par t ic les ,  i .e. those pa r t i c l e s  t h a t  do not 

suffer  a co l l i s ion  i n  transit, arrive,  and, 

3. where the  'tslow" residue, representing those p r t i c l e s  t h a t  have 

suffered a co l l i s ion(s ) ,  a r r ive .  

Any discussion of gaseous diffusion i s  bas ica l ly  an i n i t i a l  value 
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problem. 

mental ver i f icat ion of the above because of the considerable d i f f i cu l ty  one 

would experience i n  es tabl ishing known i n i t i a l  conditions. 

described i n  t h i s  paper i s  thus largely qua l i ta t ive  i n  nature. 

This consideration i s  important i n  the  conception of an experi- 

The experiment 

The experiment provides for  the establishment of a repe t i t ive ,  

pulsed plasma i n  a spec i f ic  region of spEtce and i t s  detection by means of 

double f loat ing probes a f i n i t e  distance away. The length of the diffusion 

path, t h a t  i s ,  the distance between the ionizing electrodes and detecting 

probes i s  a variable. 

As  shown i n  Figure 11, the "fast" and "slow" pa r t i c l e  groups predicted 

theore t ica l ly  are,  i n  f ac t ,  detected. And the charac te r i s t ics  of these 

groups as the background pressure and diffusion path a re  varied, j u s t i f i e s  

t h e i r  interpretat ion as "free streaming" and "col l is ional"  par t ic les .  

A f i n i t e  time gap before the a r r i v a l  of the i n i t i a l  pes t ic les  has been 

detected, justifying another aspect of the theore t ica l  argument. The velocity 

of propagation has been measured by considering the difference i n  t h i s  time 

delay for two d i f f e ren t  lengths of diffusion path. 

determined t o  be approximately 8 x lo5 m/s i n  t h i s  experiment. 

of the  streaming veloci ty  indicates  electronic,  as  opposed t o  ambipolar, 

flow 

The veloci ty  has been 

The magnitude 

* I  
I 
I 
I 
1 
I 
I 
I 
I 
I 
I 
1 
I 
I 
1 
I 
I 
I 
I 



VI. APPENDICES 

A. Integrat ion of the Diffusion Equation 

I n  Section 11-C, w e  showed that a general solution of the diff’usion 

equation takes the form 

The remainder of the problem involves r e l a t ing  the coeff ic ients  

A(k) and B(k)  t o  the boundary conditions. 

Le t  us denote the i n i t i a l  density and t i m e  rate of change of density 

d N(x,t) N(x,O) and Nt(x,O) = l i m  
t 4 O  a t  

Then 
00 

N(x,O)  = (A(k) + B(k) eikx dk 
-oc, 

A ( k )  ( -  f +  i b )  + B(k) ( -  
-40  

Combining these two relations,  
oa 

ikx dk (51) 
U Nt(x,O) + ( F +  i b )  N(x,O) = 2 i  1 A(k)  b(k) e 

- @  

Nt(x,O) + (f - i b )  N(x,O) = -2i r B ( k )  b(k) eikx dk (52) 
-a 

W e  now multiply equations (25) and (26) by e -iax and integrate  

over x, while noting t h a t  

f eix(k*) d~ = 2n d ( k a )  
-go 

So w e  f i nd  

(53) 



00 

-im dx A(a) = -& / (b-i f )  N(x,O) -i Nt(x,O) 
-00 

(b+i $) N(x,O) + i Nt(x,O) 1 
B b )  = 

And a f t e r  some minor simplification, we cam write 

-00 

ik(x-a) s i n  b t  dk 2 "  e 
b 

+ - 0 N ( a , O )  e 4 n  

where a , i s  a dummy variable. 

For the sake of c la r i ty ,  we represent t h i s  by 

N(x,t) = I1 + I2 + I 3 

Now by defini t ion 

s i n  G t ,/= 4D 
- -  - sin b t  

b 

7 Stratton shows t h a t  t h i s  can be written 

Gt 
s i n  b t  - - 

j0 [ 5 ] e-ikp d$ 
b 

Theref ore  

I 
I 
I 
I 
I 
i 
I 
1 
I 
I 
I 
I 
1 
I 
I 
I 
I 
I 
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where 

so 

@(a,@) = u Nt(a,O) Jo [ 5 E J-UDt2' J 
The quantity inside the  brackets is  in double transform form and is  

And i f  w e  subs t i tu te  y = x-p 

By inspection, we can write further,  

Further, w e  note that 

- "t gt 
2 - -  a e2 I2 a t  u I1 = 2 e  

so 
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and f i n a l l y  

B. The Collision Terms 

I f .  we assume t h a t  the pa r t i c l e s  described by the d is t r ibu t ion  function 

f 

f'unction 

suffer  col l is ions only with pa r t i c l e s  described by a second d is t r ibu t ion  
a f ' ,  then the co l l i s ion  term can be wri t ten as 

( e t ) ,  d f  =$$$ ( ? ? I  - f fl) gp dp d# dc' 

where 

7 (F') i s  the post co l l i s ion  value of f ( f ' )  

g 

P i s  the impact parameter 

# i s  the azimuthal  angle 

i s  the r e l a t ive  veloci ty  of the primed and unprimed par t ic les  

I n  order t o  simplify equation (64) it is  necessary t o  make fur ther  

assumptions concerning the types of pa r t i c l e s  involved. If f i s  t o  be 

the  d is t r ibu t ion  function of an electron gas col l iding with a gas of massive 



. 
neu t ra l  molecules described by f ' ,  then it i s  reasonable t o  amum that 

N 

f '  = f' 

That  is, that the neut ra l  gas is  not effected by col l i s ioas  with 

electrons.  Noting fur ther  that 

n1 = f *  dc' 

we can write equation (64) as 

If w e  now follow the  method or' section I11 and expand f i n t o  symmetric 

and antisymmetric pazts, w e  see 

(d') = n'  JJ (ze - fe) gp dp d$ + n '  ll (ho - fo) gp dp d$ 
a t  c 

That i s  

Now it has been shown' t h a t  spherical  harmonics const i tute  a set of 

proper functions f o r  the co l l i s ion  operator, t h a t  is, if w e  expand f 

ing t o  

accord- 

tha t  

where 

Y* = 2n n 'o  f [l - P ( c o s x )  p dp 
4' 0 .t 3 



34 

and x i s  the scat ter ing angle. 

We therefore expand f o  and fe  according t o  

(COS e)  
f e  = T fa" p2p  

(COS e) 

so t h a t  

= - 1 .I,(+& P2E+1 (COS e)  
1 C 

- 1  
I 
1 
1 
I 

where the  U ' s  a re  determined by equation (69). 

favors small angle scattering, the higher order anisotropics,  i .e.,  hieher 

Now i f  the co l l i s ion  process 

I values o f '  J? , are  destroyed quickly so t h a t  w e  can write 

and 

e 0 
f e. fe  

0 
f0  25 fo  P1 (cos 0 )  

I 
(74) 

I 

Now from equation (69) w e  see immediately I 
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It i s  in te res t ing  t o  note that u i s  the co l l i s ion  frequency for 1 

momentum t ransfer .  Therefore 

C. Non-Equilibrium Ambipolar Diffusion 

We write the time dependent forms of the continuity and flow equations 

f o r  both electrons and ions: 

Electrons 

- 
= o  a N- 

i3 t 
- + v .  f7 

-.- 

Ions 

+ - -3N+ + v. 7 = o  
-3 t 

(42 1 

(43 

(44) 

- + 
Here, and y represent the electron-neutral  and ion-neutral 

co l l i s ion  frequencies respectively. 

W e  make the standard assumptions of quasi-neutral i ty  and ambipolar 

flow, 
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So equations (43) and (45) become 

m- 3 ”  + m - V N + N e E  = - m y - / -  
d t  (46) 

(47) 

Adding equations (46) and (47) 

(4%) 
7 (m + M) - ”’ + k ( T - +  T’) vN = - ( m v  - + Mu+) 1 a t  

Now combining equation (48) with the continuity equation, 

yie Ids 

where 

This is of the form 

1 d 2N c3N 2 
LJa d t 2  l3t 

+ - = D a p  N - -  

(49) 

is the usual result for the ambipolar diffusion coefficient, and we define 

the effective ambipolar collision frequency by 

M Y +  + m y -  a .= u+ + m 9- 
J J =  M +  m M (53) 

Comparing equation (51) with equation (16), we see that the ambipolar 

diffusion speed is 



I 

In the case of an isothermal plasm w e  have 

37 

and the gas diffuses approximately at the ion thermal speed. 
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N 

Figure 2. Conventional Theory  for Diffusion of a Rectangular 

Pulse of Gas at Time t = E .  



40 

N N 

t = O  
1 3  

t = t  

N N 

X 

2 t = t  3 t = t  

Figure 3. Partial Solution for the Diffusion of an Initial 6-Function. 
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Figure 8. Development of Density vs. Time as Predicted by 

the  Conventional Theory. 
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I 

TIME 

Figure 9. Development of Density vs. Time as Predicted by 

the Modified Theory. 
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4.8. 

Top Trace: Probe Response 

Bottom Trace: Ion iz ing  Pulse  

Sca le  : 20 microseconds/crn. 

Figure 11. Sample of Data Obtained. 
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Figure 12. Probe Response f o r  Various Gas Pressures. 



Figure ua: 9.8 cm. separation 

Top Trace: Probe Response 

Bottom Trace: Ionizing Pulse 

Scale: 20 microseconds/cm 

Figure 13b. 13 cm separation 

Figure 13c; 17 cm separation 

Figure 13. Probe Response for Various Electrode Separations. 
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